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Abstract
The present work aims at reviewing and identifying gaps in knowledge and future perspectives of satellite-derived precipi-
tation downscaling algorithms. Here, various aspects related to statistical and dynamical downscaling approaches of the 
precipitation data sets from the Tropical Rainfall Measuring Mission (TRMM) and its successor Intergraded Multi-Satellite 
Retrievals for Global Precipitation Measurement (IMERG–GPM) mission are reviewed and the existing downscaling methods 
are categorized and analysed, to highlight the usefulness and applicability of the produced downscaled precipitation data sets. 
In addition, a critical comparison of the various statistical and dynamical methods for spatial or spatiotemporal downscaling 
of GPM and TRMM precipitation estimates was conducted, in terms of their advantages and disadvantages, simplicity of 
application and their suitability at different regional and temporal scales and hydroclimatic conditions. Finally, the adequacy 
of downscaling remotely sensed precipitation estimates as an effective way to obtain precipitation with sufficient spatial and 
temporal resolution is discussed and future challenges are highlighted.

Keywords GPM IMERG · GPM precipitation · machine learning · precipitation downscaling · Satellite-derived 
precipitation · TRMM

Introduction

Hydrological models and early warning systems related to 
the forecasting of extreme hydrological phenomena rely on 
accurate and readily available information for input vari-
ables, such as precipitation. Ground measurements form an 
essential source of information; nevertheless, the operation 
of such networks still does not provide adequate coverage, 
resulting in poor gauged or even ungauged basins (Lakshmi 
2004). Accurate precipitation estimates are of paramount 
importance for any hydrological model to operate reliably, 
as they represent the input of water to the hydrological sys-
tem. Precipitation is also an important parameter for weather 
prediction and climate change research (Lu and Yong 2018; 
Ricciardelli et al. 2018). Therefore, grid-based precipitation 
with high accuracy and high-quality spatiotemporal reso-
lution is vital for climatology and hydrological researches 
at various scales (Duan and Bastiaanssen 2013; Ma et al. 

2020). The scarcity of ground-based precipitation observa-
tions constitutes remotely sensed precipitation a precious 
tool for hydrological assessment, as long as remotely sensed 
information captures the spatial and temporal variability of 
precipitation. Satellite-based precipitation estimates (SPEs) 
have the advantage of high coverage and easy access to the 
data, which is an effective tool to acquire precipitation at 
local, regional or global scale (Kidd and Levizzani 2011). 
Previous research has shown that SPEs can offer precious 
input to hydrological models to enhance their performance 
in basins, where rain gauges are sparse (Le et al. 2020). 
However, low spatial resolution of the existing SPEs prod-
ucts is sometimes restrictive and their downscaling is nec-
essary, because their spatial resolution is too coarse for use 
at the regional and basin scales or for parameterizing either 
hydrological or meteorological models at a local scale. 
Meanwhile, satellite precipitation is found useful for the 
improvement of spatial and temporal resolution not only for 
other remotely sensed products, such as Total Water Storage 
Anomalies from the Gravity Recovery and Climate Experi-
ment (GRACE) (Gemitzi et al. 2021), but also for reanalysis 
and observation-based data (Sheffield et al. 2006).
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Nowadays, precipitation is considered an important vari-
able in climatological, ecological and hydrological studies, 
because it constitutes part not only of the energy balance but 
also of the water cycle too (Ghajarnia et al. 2015). Obtain-
ing high temporal and high spatial resolution precipitation 
is crucial, mainly for the understanding of global climate 
change, since global warming has a detrimental effect on the 
hydrological cycle, altering the atmosphere’s water vapor 
capacity and the evaporation rate, resulting in changes in 
precipitation intensity and occurrences. This can lead to 
increasing and more frequent wet or dry extremes (Held and 
Soden 2006; Giorgi et al. 2011). Remote sensing is offering 
a solution in detecting these changes with reliable estimates 
of precipitation over large areas; however, the size of the 
pixel of the satellite precipitation data sets is too coarse to be 
applied either in hydrological and/or in meteorological stud-
ies, especially at the local or regional scales (Michaelides 
et al. 2009; Duan and Bastiaanssen 2013). Therefore, before 
using satellite precipitation products in several studies, 
downscaling is required not only to improve the accuracy 
of satellite-based data sets and to make their contribution 
meaningful even at local scales but also to improve hydro-
logical forecasts. In recent years, several studies aiming to 
ameliorate the spatial resolution of satellite-based precipita-
tion estimates are presented and many algorithms have been 
suggested for that purpose.

Research on satellite-derived precipitation has received 
increasing interest, and various SPEs have been produced, 
mainly relying on the satellite observations provided by the 
synergistic operation of both passive and active sensors that 
detect radiation of clouds in the atmosphere. The first mis-
sion dedicated to the study of tropical and subtropical pre-
cipitation was TRMM, launched in 1997, introducing for the 
first time the Precipitation Radar to acquire information on 
processes within clouds that lead to precipitation. TRMM 
operated until 2015 and was followed by the GPM mission, 
with the new Dual-frequency Precipitation Radar (DPR) 
(Levizzani and Cattani 2019).

Besides the remotely sensed precipitation data sets origi-
nating from TRMM or GPM retrievals, there are climatol-
ogy products that combine remotely sensed observations 
with ground information to acquire consistent climatology 
data sets, useful in hydrological forecasts, drought and flood 
monitoring. Thus, several products relying on the satel-
lite retrievals combined with ground gauge stations were 
introduced to the scientific community, such as the Global 
Satellite Mapping Precipitation (GSMaP) product (Kubota 
et al. 2006), the Precipitation Estimation from Remote Sens-
ing Information using Artificial Neural Network–Climate 
Data Record (PERSIANN–CDR) data set (Ashouri et al. 
2015), the Multi-Source Weighted-Ensemble Precipitation 
(MSWEP) data set (Beck et al. 2017), the Climate Haz-
ards Group Infrared Precipitation with Stations (CHIRPS) 

data set (Funk et al. 2015), the Global Land Data Assimi-
lation System (GLDAS) product (Rodell et al. 2004), the 
SM2RAIN product (Massari et al. 2020; Filippucci et al. 
2022).

Although all the above-mentioned precipitation data sets 
are useful in many different applications, satellite derived 
precipitation and especially the GPM IMERG product, is 
of particular importance for near real time applications as 
its latency (with a minimum latency of ~ 4 h for GMP Early 
Run) can support the requirements of an early warning sys-
tem. Nevertheless, its spatial resolution (~ 10 km for GPM 
IMERG) constraints its wide applicability and that is why 
downscaling is often required. Downscaling, however, can 
improve considerably and enhance both the spatial and tem-
poral dimension of precipitation data sets. Most downscaling 
efforts have focused on either TRMM or GPM missions, 
although the same approaches can be applied to the rest of 
precipitation data sets.

Different precipitation downscaling methods exist. How-
ever, for practical reasons, the end user in a specific region 
can apply only few of the available methods. For this rea-
son, review studies are helpful to point out the uncertainty 
associated with the researcher’s final choice of the precipita-
tion downscaling method. Sarr et al. (2015) mentioned that 
the final choice of the downscaling method is very impor-
tant, mainly in the fields of decision-making and regional 
planning.

There are two main approaches for downscaling satellite 
derived precipitation: statistical downscaling and dynamical 
downscaling (Sachindra and Perera 2016). The statistical 
downscaling depends on the empirical statistical relation-
ships between subject variable and auxiliary variables. It 
is a highly efficient method which has been widely used for 
satellite-based precipitation downscaling in recent studies 
(Jia et al. 2011; Duan and Bastiaanssen 2013; Chen et al. 
2015; Shi et al. 2015; Sharifi et al. 2019). The results of the 
statistical downscaling, could be strongly influenced by data 
errors if the predictor does not consider dominant climatic 
features (Di Vittorio and Miller 2013). Moreover, accord-
ing to Fowler et al. (2007), statistical methods consist of a 
variety of approaches, which use experimental multiscale 
statistical relationships, parameterized by environmen-
tal predictors and other observations. Precipitation over a 
region is better represented as an ensemble of multiscales 
(multifractal), where each scale has a certain spectrum of 
rainfall (Deidda et al. 1999; Lovejoy and Schertzer 2006; 
Lovejoy et al. 2008). Thus, the precipitation process is often 
simulated using a multiple random cascade model, which 
captures the multi-scaling characteristics of the rain, assum-
ing that the scale-invariance is within the desirable spatial 
and temporal scale range (Over and Gupta 1994; Groppelli 
et al. 2011). This existence of multifractal scale invariance 
of rainfall in space and time has been introduced in the 
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1980s and has been documented from many researchers in 
the past (Olsson et al. 1993; Over and Gupta 1996; Har-
ris et al. 1998; Deidda et al. 1999; de Montera et al. 2009; 
Gires et al. 2013). It was considered as a valuable analysing 
tool especially for radar data (Tessier et al. 1993). Figure 1 
shows a schematic representation of the construction of a 
one dimensional multifractal ‘a model’ cascade, adapted 
from Lovejoy and Schertzer (2006).

On the other hand, dynamical downscaling is based on 
the mathematical representations of the complex physical 
process of atmosphere, ocean and land surface. It relies on 
regional climate models and requires intensive computa-
tional cost and large data volume, which limit its applica-
bility (Wilby and Wigley 2000; Sylla et al. 2009; Sachindra 
and Perera 2016). Dynamical downscaling methods do not 
produce significantly better results for precipitation and are 
often considered too computationally demanding (Hellström 
et al. 2001), but when compared to statistical downscaling, 
they are less demanding in terms of actual data ingestion. 
It is worth noting, though, that the newly developed Cloud-
Resolving Models (CRMs), which are used for the investi-
gation of the mesoscale dynamics of intense precipitation 
system at a fine scale, could offer a potential and promising 
approach for the dynamical downscaling of remote sensing 

precipitation estimates (Matsui et al. 2016; Satoh et al. 
2019).

In general, according to Gutmann et al. (2012), the statis-
tical downscaling methods are based on current estimations 
of the spatial distributions of several important meteorologi-
cal variables, such as temperature and precipitation, assum-
ing that the small-scale spatial distribution will not change 
significantly in a modified climate. On the other hand, the 
dynamical downscaling approaches can resolve inherent 
dynamics of precipitation (Schmidli et al. 2007), providing 
hydrometeorological variables, which are physically accord-
ant with the downscaled precipitation and are necessary for 
many hydrological models. Thus, according to all above 
reasons, the dynamical methods of precipitation downscal-
ing seem to have the same goal with the statistical methods, 
i.e., the successful downscaling of the SPEs, improving their 
information content and usability accordingly.

Downscaling of satellite precipitation has attracted atten-
tion of various environmental scientists, especially during 
the last decade. Previous downscaling efforts were merely 
focused on bridging the gap between Global Climate Mod-
els (GCMs) or Regional Climate Models (RCMs) and local 
weather/climate observations (Maraun et al. 2010). The 
main purpose of this review study is to offer researchers 
knowledge on the topic of precipitation downscaling meth-
ods, to identify gaps in research and inconsistencies in previ-
ous studies, to critically comment on the methodology and 
results of previously published works and finally to identify 
future research trends and challenges. Thus, this study can 
be regarded as a practical guide for any researcher who plans 
to apply a downscaling method, to use the most appropriate 
downscaling approach to achieve the desired result in terms 
of spatial and temporal resolution.

Precipitation data sets—products

Satellites are categorized, according to their orbit, to Low 
Orbiting Satellites (LOS), scanning the Earth from an alti-
tude of 400–800 km, following a sun-synchronous orbit and 
to Geostationary Satellites (GS), orbiting the Earth at an 
altitude of approx. 36,000 km. GS appear stationary over a 
set position, because they are synchronized with the Earth's 
rotation. The LOS that are used for precipitation investiga-
tion purposes are equipped with Infrared (IR), Visible (VIS), 
Active Microwave (AMW) and Passive Microwave (PMW) 
sensors, while GS are equipped mostly with IR and VIS 
instrumentation. IR sensors, by measuring the cloud’s tem-
perature and with the performance of statistical methods, 
have been used to establish a relation between cloud’s tem-
perature and precipitation. However, this indirect relation-
ship is subject to large changes over the course of rain events. 
On the other hand, VIS sensors can detect precipitation by 

Fig. 1  Schematic representation of the construction of a one-dimen-
sional multifractal ‘a model’ cascade. The vertical axis shows the 
boosts and decreases in energy flux density. At each step the hori-
zontal scale is divided by two. λ = L/Ld, where L = a large external 
scale, and Ld = the small dissipation scale [adapted from Lovejoy and 
Schertzer (2006)]
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measuring the clouds’ brightness, a relationship that is poor 
and can be used only during daytime (Kidd and Huffman 
2011). The AMW sensors measure the radiation backscatter 
from precipitation, which is not always a robust criterion, 
because attenuation effects can be substantial in heavy pre-
cipitation events (Iguchi et al. 2000). Finally, the PMW sen-
sors can detect precipitation by measuring the change of the 
microwaves radiation emitted from the Earth which interacts 
with the rain droplets in the atmosphere. Caution should be 
given, though, interpreting the measurements over different 
regions, since the precipitation detection techniques are dif-
ferent over land and ocean. In addition, PMW are currently 
installed only onboard LOS, which hinders the continuous 
provision of precipitation observations (Kidd and Huffman 
2011). Despite the various difficulties encountered in acquir-
ing accurate satellite precipitation data sets, constant vali-
dation efforts using ground observations provide improved 
SPEs at near-real time, while the combination of satellite 
precipitation with ground observations, cloud resolving 
models and land data assimilation system present a huge 
potential for improved precipitation products, contributing 
thus to better representation of the hydro-meteorological 
conditions (Belay et al. 2022).

There are several precipitation products and data sets that 
have been used in downscaling applications. Even though 
our review is based on previous works using TRMM and 
GPM–IMERG precipitation data sets, mainly because they 
are the state-of-the-art SPEs used for the production of all 
other climatology data sets, a short description of the other 
precipitation data sets is also presented.

TRMM products

GPM and TRMM observations are processed to acquire 
precipitation estimates. TRMM precipitation is based on 
the TRMM Multisatellite Precipitation Analysis (TMPA) 
algorithm (Huffman et al. 2007) and is released with the 
TRMM 3B42 3-h temporal resolution and a 0.25 degree spa-
tial resolution. GPM measurements are processed with the 
Integrated Multi-satellite Retrievals for Global Precipitation 
Measurement (IMERG) algorithm to extract precipitation 
estimates at the half-hour time step with a 0.1° spatial reso-
lution (Hou et al. 2014).

The TRMM 3B42 3-hourly product with coverage 
50°N–50°S is derived from different microwave imag-
ers and IR sensors (Huffman et al. 2007). The precipita-
tion data from microwave imagers are collected by a large 
number of satellites, namely, TRMM (TRMM Microwave 
Imager), Aqua (Advanced Microwave Scanning Radiome-
ter-Earth Observing System, AMSR-E), United States Air 
Force Defense Meteorological Satellite Program (DMSP) 
Block 5D-2 satellites (Special Sensor Microwave Imager, 
SSMI, and Special Sensor Microwave Imager/Sounder, 

SSMIS), National Oceanic and Atmospheric Administra-
tion (NOAA) satellites NOAA-15, NOAA-16 and NOAA-
17 (Advanced Microwave Sounding Unit-B, AMSU-B), 
NOAA-18, NOAA-19 and European Operational Meteoro-
logical (MetOp) satellites MetOp-A, MetOp-B and Met-
Op-C (Microwave Humidity Sounders, MHS) (Chen et al. 
2013b). For the estimation of the satellite-based precipita-
tion data from these microwave imagers, the Goddard Pro-
filing Algorithm (GPROF) is applied over land and ocean 
(Kummerow et al. 2001), while as far as AMSUB-B and 
MHS sounders are concerned the Ice Water Path (IWP) tech-
nique is applied (Zhao and Weng 2002; Weng et al. 2003). 
Since there is a different approach estimating precipitation 
over land and ocean regions, TRMM 3B42 product is con-
sidered more accurate over ocean than over land. This is due 
to the fact that over the oceans the emissivity is lower than 
the emissivity of the hydrometeors that are detected from 
the PMW sensors, whereas over land, the opposite is true, 
hindering the detection of precipitation (Kubota et al. 2009; 
McCollum and Ferraro 2005; Sapiano and Arkin 2009). 
The precipitation data from IR sensors are collected by the 
Geosynchronous Earth Orbit Satellites (GEOS I–M) which 
provide better spatiotemporal coverage and more accurate 
precipitation estimates (Chen et al. 2013b). However, the IR-
based precipitation estimates share the same limitations with 
the brightness temperature, corresponding to the cloud-top 
temperature and cloud height (Huffman and Bolvin 2015).

The 3-hourly daily precipitation estimates are produced 
in four stages (Huffman et al. 2007). First, for each indi-
vidual Field of View (FOV), the passive microwave data 
are converted to precipitation estimates and each data set is 
averaged to 0.25° spatial grid over the ± 90 min time range. 
These estimates are adjusted to a “best” estimate, using a 
probability-matched method, according to Miller (1972). 
Then, IR estimates are produced using microwave calibra-
tion, after being zenith-angle corrected, averaged to the cor-
responding grid box’s brightness temperature and plane-fit 
interpolated to the corresponding 0.25° grid. Afterwards, the 
available microwave estimates are taken “as is”, while the 
missing values are completed with microwave-calibrated IR 
estimates. The 3-hourly merged estimates are summed on a 
monthly scale, creating a multi-satellite (MS) product and 
combined with gauge data, creating a post-real-time monthly 
satellite-gauge (SG) combination (3B43), following Huff-
man et al. (1997). The field of SG/MS ratios are estimated 
on 0.25° × 0.25° grid and applied to the 3-hourly data to 
remove bias, creating the final product (3B42). More infor-
mation about the above algorithm can be found in Huffman 
et al. (1997).

TMPA version 6 (V6) products have been widely used 
in the hydrologic and related communities until 30 June 
2011 (Jiang and Zipser 2010; Fang et al. 2013; Chen et al. 
2013a), but many errors and uncertainties of V6 products 
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have been reported in numerous studies (Stampoulis and 
Anagnostou 2012; Yong et al. 2012). Thus, a new algo-
rithm (version 7, V7) was released in May 2012, improving 
the TMPA products. In V7, the enhanced TRMM Level 2 
Precipitation Radar (PR) product had been used with small 
to moderate improvement of the previous V6 Level-2 PR 
product (Kirstetter et al. 2013). In addition, the 1° monthly 
full-monitoring gauge Global Precipitation Climatology 
Center (GPCC) data were used, which improved the analy-
sis over complex terrain (Huffman et al. 2010). Furthermore, 
Grisat-B1 and Special Sensor Microwave Imager/Sounder 
(SSMI/S) infrared data were further implemented, improv-
ing the resolution and the areal coverage of V6 algorithm. 
More information about the V7 algorithm can be found in 
Huffman et al. (2010) and Huffman and Bolvin (2015).

GPM–IMERG products

The Integrated Multisatellite Retrievals for Global Pre-
cipitation Measurement (GPM) (IMERG) algorithm is 
based on numerous multisatellite retrievals from National 
Aeronautics and Space Administration (NASA) TRMM 
Multi-Satellite Precipitation Analysis (TMPA), NASA 
Precipitation Processing System (input data assembly and 
processing), National Oceanic and Atmospheric Administra-
tion (NOOA) Climate Prediction Center (CPC) morphing 
technique (CMORPH, Lagrangian time interpolation) and 
the Precipitation Estimation from Remotely Sensed Infor-
mation using Artificial Neural Networks (PERSIANN) at 
the University of California (microwave calibrated IR using 
artificial neural networks) (Huffman et al. 2015a, b, c). GPM 
IMERG contains precipitation estimates from various Pas-
sive MicroWave (PMW) and IR sensors, at 0.1° × 0.1° spa-
tial resolution, between 60° S–60° N, at several time scales 
(half-hourly, 3-hourly, daily, monthly).

GPM IMERG has attracted the attention of scientific 
community, as it generates global precipitation information 
at various time scales, readily available for use by research-
ers and decision makers. In the latest version of GPM (V07), 
there is a great improvement in the accuracy of the Special 
Sensor Microwave–Imager/Sounder (SSMIS) observations 
that are released as part of the GPM V07 data set (Kroodsma 
et al. 2021).

The precipitation estimates from PMW are calculated 
utilizing the 2014 version of the Goddard Profiling algo-
rithm (GPROF2014) (Kummerow et al. 2001; Liu 2016). 
The merged IR data are provided by the CPC and the two 
estimates (PMW and IR) are used by the CMORPH–Kalman 
filter Lagrangian time interpolation, producing half-hourly 
estimates (Janowiak et al. 2001; Liu 2016). The monthly 
full-monitoring gauge GPCC precipitation data are used for 
bias correction (Schneider et al. 2015). A schematic repre-
sentation of the main data flows and processing components 

of GPM–IMERG is presented in Fig. 2, adapted from Huff-
man et al. (2020).

The GPM IMERG provides 3 half-hourly products, 
namely, the IMERG Early Run (IMERG-E) with approxi-
mately a 6-h latency after observation time, the IMERG 
Late Run (IMERG-L) with a latency of roughly 18 h and 
the IMERG Final Run (IMERG-F) with almost 4 months 
latency after observation time (Hou et al. 2014; Huffman 
et al. 2015a, b, c). The IMERG-E products are available 
since 14th March 2015, while the IMERG-L and IMERG-
F are available since 1st April 2015 and 12th March 2014, 
respectively. The IMERG-E and IMERG-L products are 
satellite-based data, while IMERG-F is a post-real time 
product, calibrated with the monthly full-monitoring gauge 
GPCC precipitation data (Wang et al. 2017). More informa-
tion about the IMERG products and algorithm can be found 
in (Huffman et al. 2015a, b, c, 2019, 2020). It is worth not-
ing that the various algorithms used to produce the IMERG 
precipitation estimates may change as remote sensing appli-
cations advance, improving the final products, whereas the 
monthly precipitation estimates from the Global Precipita-
tion Climatology Project (GPCP) are considered as a more 
stable product, appropriate for climatological studies (Huff-
man et al. 2020).

According to Pradhan et al. (2022), GPM–IMERG per-
forms better at monthly and annual time steps than at daily 
and sub-daily ones. In the matter of hydrological applica-
tions, the use of GPM–IMERG product has resulted in note-
worthy differences in the streamflow simulation (Pradhan 
et al. 2022). Moreover, the most important factor is that each 
new version that replaces the previous one, shows signifi-
cant improvement in almost every climatic condition and 
spatiotemporal scale, making the GPM–IMERG product a 
promising tool for current and future applications (Pradhan 
et al. 2022). The latest version 06 of GPM–IMERG product 
combines the early precipitation estimates, collected during 
the operation of the TRMM satellite (2000–2015), with the 
recent precipitation estimates, collected during operation of 
the GPM satellite (2014–present). Therefore, researchers and 
application developers are able to compare historical and 
contemporary data. In addition, they are better informed to 
predict the weather and climate more accurately and have the 
ability to distinguish between normal and extreme rain and 
snowfall around the world. Finally, they can develop appli-
cations to deal with present and potential disasters, spread 
of diseases, energy production, resource management, food 
security etc.

Additional remote sensing precipitation data sets—
products

The Global Satellite Mapping Precipitation (GSMaP) intro-
duces a global, hourly, gauge-adjusted precipitation rate 
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at 0.1° using input from the GPM 3-hourly precipitation 
estimates from 2014 to present (Kubota et al. 2006). It is a 
merged PMW-IR precipitation product developed in Japan. 
The GSMaP “Real-time product” is provided immediately, 
while the other two products are provided with a latency of 
3 days (“Standard product”) and 4 h (“Near-real time” prod-
uct). The “Reanalysis product” which includes reprocessed 
historical data, are also available (Kubota et al. 2020).

Precipitation Estimation from Remote Sensing Informa-
tion using Artificial Neural Network–Climate Data Record 
(PERSIANN–CDR) (Ashouri et al. 2015) is another precipi-
tation data set which provides daily output at 0.25° spatial 
resolution almost globally (60° N–60° S), processing infor-
mation from infrared (IR) satellite precipitation retrievals 
with the Global Precipitation Climatology Project (GPCP) 
gridded monthly precipitation at 2.5° (Adler et al. 2018). 
GPCP is satellite–gauge combined precipitation data set 
covering the period from 1979 to present with a latency of 
2–3 months. Considering that PERSIANN–CDR enhances 
both temporal and spatial resolution of the GPCP data, it can 
be regarded as a spatiotemporal downscaling of the GPCP. 
PERSIANN–CDR delivers a consistent and continuous time 
series of precipitation suitable for assessments related to cli-
mate variability and change.

Another global precipitation data set is the Multi-Source 
Weighted-Ensemble Precipitation (MSWEP) (Beck et al. 

2017). This data set combines ground stations data with 
satellite-based information and reanalysis to produce high 
quality precipitation data set from 1979 to near real pre-
sent globally at 0.1° spatial resolution which is available at 
3-hourly, daily and monthly temporal resolutions.

The Climate Hazards Group Infrared Precipitation with 
Stations (CHIRPS) (Funk et al. 2015) combines ground sta-
tion meteorological data and satellite derived infrared Cold 
Cloud Duration (CCD) observations to obtain CHIRPS high 
resolution, i.e., 0.05°, precipitation at a daily time step for 
over 30 years (from early 1980s to present) with an average 
latency of about 3 weeks. The procedure incorporates spatial 
correlation structure of CCD-estimates to determine inter-
polation weights. Funk et al. (2015) showed how CHIRPS 
algorithm can be used to quantify hydrologic effects of 
rising air temperatures and decreasing precipitation in the 
Greater Horn of Africa. Finally, in their study, they showed 
that CHIRPS algorithm can be applied effectively for hydro-
logic forecasts and trend analyses in southeastern Ethiopia. 
Higher latitudes, however, are not covered by CHIRPS, since 
its spatial coverage ranges from 50° S–50° N, 180° W–180° 
E.

Precipitation can also be extracted from various global 
land data assimilation systems and reanalysis climatology 
data sets. Global Land Data Assimilation System (GLDAS) 
(Rodell et al. 2004) combines satellite observations and 

Fig. 2  Schematic representa-
tion of the GPM–IMERG base 
structure and data flow. Colored 
blocks represent the contribu-
tion of the participated institu-
tions [adapted from Huffman 
et al. (2020)]
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ground measurements. It provides estimates of many essen-
tial land variables at 3-hourly time step using land surface 
modeling and assimilation methods, covering the period 
from 2000 until today. However, the spatial resolution (i.e., 
0.25°) is inadequate for the assessment of spatial variability 
of precipitation at local scales.

The ERA5-Land (Muñoz-Sabater et al. 2021), a global 
land reanalysis data set provides among many other land 
variables, precipitation estimates from 1950 to present, 
at the hourly, daily and monthly time steps at 9 km spa-
tial resolution. It is updated daily with a latency of 5 days. 
Although ERA5-Land precipitation is not a satellite product, 
it is produced assimilating millions of observations from 
various data sets, e.g., precipitation radar observations, into 
ECMWF land surface model.

Other attempts to retrieve precipitation comprise the 
SM2RAIN products based on downscaled remotely sensed 
soil moisture combined with other satellite retrievals (Mas-
sari et al. 2020; Filippucci et al. 2022). There are, however, 
some limitations of the SM2RAIN precipitation mainly in 
complex terrains and during winter (Sharifi et al. 2019).

Downscaling methods

Accurate downscaling of precipitation remains a challenge 
because of the large spatial variability of precipitation which 
cannot be described with the spatial resolution of the SPEs. 
There are two main categories of downscaling methods; the 
statistical and the dynamical downscaling method.

Statistical downscaling approaches

Statistical downscaling methods model the statistical rela-
tionships between low resolution variables and high-reso-
lution auxiliary variables (Tang et al. 1955; Xiaogang et al. 
1969; Sharifi et al. 2019). However, a large reliable data set 
is required to establish an appropriate regression or other 
type model (Tang et al. 1955). Regarding statistical downs-
caling of satellite precipitation, most studies are conducted 
using auxiliary variables correlated with the precipitation 
estimates. For example, the normalized difference vegetation 
index (NDVI) parameter is the most widely used variable 
because of its high correlation with precipitation (Foody 
2003; Chen et al. 2019) especially in arid and semi-arid 
regions, where the growth of vegetation depends mainly on 
precipitation. Moreover, topography effects on precipitation 
are well-known as orographic effects, and as a consequence 
the integration of the elevation factor in downscaling meth-
ods can predict better precipitation’s distribution in areas 
with complex terrain (Jia 2012). Nevertheless, the relation-
ship between land surface characteristics and the precipi-
tation (i.e., NDVI, elevation, geographical location etc.) is 

spatially non-stationary. Therefore, the representation of the 
spatial variability of precipitation by NDVI–precipitation or 
elevation–precipitation relationship alone is inadequate (Xu 
et al. 2015b). Fang et al. (2013) determined that the precipi-
tation is also affected by the geographic location (latitude 
and longitude). Chen et al. (2015), introduced the use of land 
surface temperature (LST) parameter from the Moderate 
Resolution Imaging Spectroradiometer (MODIS) to improve 
the downscaling results for TRMM TMPA precipitation over 
an arid to semi-arid area. In previous studies, it has also 
been found (Jing et al. 2016; López López et al. 2018), that 
LST and slope as well as aspect had significant impact on 
satellite-derived precipitation downscaling. Except from 
the auxiliary variable, the empirical statistical relationship 
between satellite-derived precipitation and the used auxil-
iary variables can also influence downscaling results. Thus, 
different empirical statistical relationships have been devel-
oped in downscaling models, including univariate regression 
(UR) (Immerzeel et al. 2009; Duan and Bastiaanssen 2013), 
multivariate regression (MR) (Jia 2012; Chen et al. 2020a), 
and geographically weighted regression (GWR) (Chen 
et al. 2015; Zhao et al. 2017). However, these parametric 
regression-based methods are difficult to reflect the spa-
tial inhomogeneity between precipitation and land surface 
characteristics (e.g., NDVI, LST, and elevation). In addition, 
multifractal analysis was also used as a downscaling method, 
consisting of a quantitative tool for the representation of the 
mass distribution of fractal space (Sun et al. 2022). Its main 
aspect is the assumption that over a region the multifrac-
tal properties of precipitation at coarse spatial resolution 
are the same as those at finer spatial resolution. This coarse 
scale parameter is assumed to consist of a heterogeneous 
and a homogeneous portion. The heterogeneous portion is 
indicated by the ensemble of the long-term properties of 
the precipitation, while the homogenous portion is defined 
by multifractals. The final rainfall estimate at finer scale is 
produced using a multiplicative random cascade model (Xu 
et al. 2015a). With the development of artificial intelligence, 
many machine learning algorithms, such as artificial neural 
network (ANN), support vector machine (SVM), random 
forests (RF) and deep learning (DL) have been proposed for 
nonlinear problems (Chaney et al. 2016; He et al. 2016; Jing 
et al. 2016; Chen et al. 2020a). Among the SPEs downscal-
ing approaches, the vast majority focuses on the enhance-
ment of the spatial resolution, while the temporal resolution 
for most studies remains at the daily or monthly time steps.

Statistical downscaling of SPEs was first attempted 
in the TRMM era. Hence, Deidda et al. (2006) utilizing 
remote sensing rainfall data from the Tropical Rainfall 
Measurement Mission–Large-Scale Biosphere Atmosphere 
Experiment (TRMM–LBA) land campaign, in conjunc-
tion with findings from the Tropical Ocean Global Atmos-
phere Coupled Ocean–Atmosphere Response Experiment 
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(TOGA–COARE), the Global Atmospheric Research Pro-
gram (GARP)–Atlantic Tropical Experiment (GATE) and 
the Global Learning and Observations to Benefit the Envi-
ronment (GLOBE) program, studied the scaling behavior 
of the space–time rainfall fields and the orographic influ-
ence on them, over the Amazon Basin, for the period 
10/1–28/2/1999. After performing a multifractal analysis, 
they found that the precipitation data were scale-invariant 
under self-similar transformations. In addition, they found 
that the orography did not play a significant role in rainfall 
intensity but this might be due to the fact that their study 
area was flat and their timeseries was short, probably con-
cealing spatial heterogeneity and the orographic effect on 
precipitation fields (Purdy et al. 2001).

Immerzeel et al. (2009) investigated the relation between 
TRMM precipitation estimates and the NDVI for differ-
ent spatial resolutions on the Iberian Peninsula in southern 
Europe, using time series from 2001 to 2007. In their study, 
they used the Local Moran’s Index as an indicator to reflect 
the spatial autocorrelation of NDVI to identify the outliers 
of NDVI values that they are not related to precipitation. 
Immerzeel et al. (2009) indicated that NDVI is a good proxy 
for precipitation at the annual scale and the derived relation 
between NDVI and precipitation was used to develop a new 
downscaling methodology that uses coarse scale TRMM 
precipitation estimates and fine scale NDVI patterns. Their 
downscaling procedure resulted in significant improvements 
in correlation, bias, and root mean square error for aver-
age annual precipitation over the whole period, as well as 
for individual years, i.e., a dry year (2005), and a wet year 
(2003). However, the temporal resolution does not allow for 
hydrological or natural disaster assessments, limiting thus 
the applicability of the acquired results.

Jia et al. (2011) developed a statistical downscaling algo-
rithm for monthly TRMM precipitation using NDVI and 
Digital Elevation Model (DEM) as auxiliary variables. They 
applied their methodology in the Qaidam Basin in China, 
where they downscaled TRMM 3B43 0.25° × 0.25° precipi-
tation fields to 1 × 1 km pixel of precipitation for each year 
from 1999 to 2009. Results were validated against monthly 
precipitation from six gauging stations, indicating r2 values 
ranging from 0.72 to 0.96. However, although the down-
scaled output performed satisfactorily also at the annual time 
step, the methodology is highly impacted by the accuracy of 
the TRMM data set.

Duan and Bastiaanssen (2013) have also used NDVI as 
an auxiliary variable to downscale TRMM-3B43 version 7, 
from 0.25° to 1 km grids at the annual and monthly scales. 
Their approach incorporates a calibration phase, where 
after downscaling using site-specific non-linear relation-
ships between annual precipitation and annually averaged 
NDVI, the 1-km product was calibrated using gauge data 
sets, based on Geographical Difference Analysis (GDA) 

and Geographical Ratio Analysis (GRA) (Cheema and Bas-
tiaanssen 2012). The developed methodology was validated 
in different climatic conditions, i.e., in the Caspian Sea 
Region in Iran where arid and semi-arid conditions prevail 
and in the Lake Tana Basin in Ethiopia with humid climate. 
In their study, they proved that the Local Moran’s Index was 
not appropriate for identifying NDVI values that should be 
excluded to create the TRMM–NDVI relationship. They also 
proved that the whole NDVI data set (except of the negative 
values of NDVI in water bodies) might be used to create 
the relationship between TRMM and NDVI. Furthermore, 
they interpolated the surrounding downscaled precipita-
tion pixels using the Inverse Distance Weight interpolator, 
estimating the annual precipitation over water bodies. The 
results of their method showed minimum difference between 
GRA and GDA calibration methods. Their validation study 
at the annual and monthly scales using rain gauge data 
provided satisfactory results and highlighted the improved 
results obtained by combining downscaling and calibration 
to obtain precipitation in regions with complex terrains. In 
addition, they indicated that NDVI is not a suitable indicator 
for downscaling precipitation over water bodies and ocean, 
while the positive relationship of NDVI and precipitation at 
the annual scale may not be valid in cases, where precipita-
tion exceeds a site-specific threshold value.

Posadas et al. (2015) used a multifractal random cas-
cade (MFRC) model to downscale daily TRMM (3B42) 
precipitation data from 0.25° to 0.01° over the region of 
Altiplano (Southern Peruvian Andes) for a period of 8 years 
(1999–2006). In addition, they used interpolated rainfall 
measurements from 19 stations across the region produced 
by the ANUSPLIN 4.4 package for validation purposes, in 
conjunction with elevation, longitude and latitude param-
eters (Hutchinson 1995). They concluded that the Mandel-
brot–Kahane–Peyriere (PMK) function that was used for 
the multifractal analysis showed better performance during 
the wet season (November–March) than during the dry sea-
son (June–October), probably due to its sensitivity to local 
heterogeneity.

To overcome the problem of NDVI saturation in dense 
vegetation conditions and its relationship with precipita-
tion at high precipitation regimes, Shi and Song (2015) 
used Enhanced Vegetation Index as an auxiliary variable to 
downscale TRMM 3B43 product. Thus, spatial downscaling 
was achieved, downscaling pixel size from 0.25° to 1 km 
by applying a nonparametric statistical relationship between 
precipitation and EVI, altitude, slope, aspect, latitude, and 
longitude. The methodology initially develops, at coarse 
scale, a nonparametric regression model using Random For-
est algorithm. Next, the developed model was applied at the 
fine resolution to obtain fine resolution annual precipitation 
and the final downscaled output was produced by adding 
the residual terms. The downscaled annual precipitation was 
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then calibrated with the GDA method and monthly data were 
produced by disaggregating the annual product by applying 
a simple fraction method. Therefore, the methodology of Shi 
and Song (2015) can be considered as an extension of the 
work of Duan and Bastiaanssen (2013), extending GDA for 
bias correction of the downscaled precipitation data set for 
the Tibetan Plateau from 2001 to 2012, using 91 rain gauge 
stations. Results indicated the improvement of monthly 
downscaled data especially after calibration.

Xu et  al. (2015a) performed a combination of linear 
regression, artificial neural network (ANN) and multifrac-
tal analysis, to downscale remote sensing precipitation data 
(from 0.25° to 0.01°) using 16 years of monthly precipitation 
estimates from TRMM (TRMM 3B43), in conjunction with 
DEM data and rain gauge measurements from 72 stations, 
over South China. Their method, even though it was robust, 
did not improve the final, downscaled precipitation product.

The annual TRMM (3B43) data set was disaggregated 
from 0.25° to 1 km grids from 2000 to 2009 for North China 
in the work of Zheng and Zhu (2015). A hybrid approach 
was adopted developing a regression model with a subse-
quent correction method. The regression equation incorpo-
rated NDVI and continentality (CON) as auxiliary variables. 
To obtain monthly precipitation data the 1 km annual pre-
cipitation was disaggregated to monthly applying monthly 
fractions. The acquired results indicated an improvement in 
the agreement with data from 220 rain gauge stations.

Machine learning has been introduced in the downscaling 
process in the work of Jing et al. (2016), where four machine 
learning algorithms, i.e., classification and regression tree, 
k-nearest neighbors, the support vector machine, and random 
forests were tested for their downscaling performance for 
the monthly TRMM 3B43 V7 precipitation data set, from 
25 to 1 km in North China. Auxiliary variables that were 
introduced in the models were NDVI, and DEM, longitude, 
latitude, daytime LST, nighttime LST, and difference of 
day–night land surface temperature. Results were validated 
against 378 rain gauges over North China during 2003, 2006 
and 2009. The most important variable was discovered to be 
LST, whereas Random Forests algorithm was less impacted 
by errors with increasing precipitation.

A different downscaling approach of the TRMM 3B43 
monthly precipitation was presented in Park et al. (2017), 
where a geostatistical approach was used incorporating rain 
gauge data. Initially, the coarse resolution TRMM product 
was downscaled to 1 km using the area to point kriging 
method, allowing direct comparison with rain gauge data. 
Then, rain gauge data were merged with the downscaled 
precipitation using two approaches, i.e., multivariate kriging 
and conditional merging, and the obtained results indicated 
that both methods were impacted by errors in the TRMM 
product. The methodology was applied in South Korea dur-
ing May to October 2013, where 71 rain gauge stations were 

in operation. Results indicated that incorporation of a large 
number of rain gauge data in the TRMM did not improve 
the performance of the methodology. However, the situation 
was quite different when a small number of rain gauges is 
introduced in the process. In this later case the predictive 
ability of the downscaled product was improved consider-
ably, indicating the effectiveness of the methodology with 
sparse ground monitoring points. In any case, the application 
of this specific methodology requires coverage of the study 
area with a number of rain gauges, which is not often the 
case, whereas the application for such a limited time period 
does not allow assessment of its performance in different 
seasons during dry and wet years.

The problem of non-stationary relationships between pre-
cipitation and land surface variables which is not consid-
ered by global and local models, that usually apply constant 
combinations of variables, has been addressed by Ma et al. 
(2017a). Therein, authors considered how the precipitation 
relationship with land variables, changes with the spatial 
scale. Thus, they developed a methodology based on Cub-
ist algorithm to downscale monthly TMPA precipitation 
to 1 km spatial resolution, using NDVI, DEM and LST as 
auxiliary variables. Application of the methodology at the 
annual time step in China from 2000 to 2015 indicated that 
the Cubist algorithm managed to divide the data set into 
subsets, and they were subsequently aggregated according 
to their geographic similarities. The result was a division of 
China into subregions similar to the Chinese rainfall zones, 
where different relationships between precipitation and aux-
iliary variables were used in the downscaling process. Cubist 
performance was compared to Multivariate Linear Regres-
sion (MLR) using annual precipitation from 714 ground sta-
tions. Results indicated that Cubist outperforms MLR within 
all range of precipitation values. In their work, Ma et al. 
(2017a), highlighted the importance of downscaling pre-
cipitation at higher temporal resolution than the annual and 
the benefits of bias correction using an extended network of 
monitoring stations.

The methodology presented in Ma et al. (2017b) has been 
applied to Qinghai–Tibet Plateau. The same assumption of 
non-stationary relationships between precipitation and land 
surface characteristics was adopted and the study area was 
discretized into sub areas with similar land surface charac-
teristics, such as vegetation, topography and land surface 
temperature. The Cubist algorithm was used to delineate the 
sub-regions, where the most representative variables were 
selected as auxiliary variables in the downscaling process. 
Therefore, the monthly TRMM Multisatellite Precipitation 
Analysis (TMPA) 3B43 Version 7 data set at 0.25° spatial 
resolution was downscaled to 1 km from 2000 to 2013. The 
results indicated an improvement of the downscaled product 
compared to the original TMPA, where systematic anoma-
lies were removed. In addition, an important finding was 
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that DEM demonstrated low correlation with precipitation 
over the study area.

In the study of Ma et al. (2018b), the Cubist algorithm 
was used again in the Qinghai–Tibet Plateau, to downscale 
the annual TRMM TMPA 3B43 V7 product to 1 km. The 
methodology used NDVI, LST and terrain characteristics 
extracted from DEM to acquire annual precipitation at fine 
resolution. The downscaled 1 km annual precipitation was 
subsequently calibrated to remove anomalies of the original 
TMPA product using the geographical ratio analysis (GRA) 
and ground observations. Finally, to acquire monthly pre-
cipitation records, the annual calibrated downscaled pre-
cipitation was multiplied by monthly fractions obtained by 
dividing the monthly TMPA estimates by the total annual 
precipitation, in each cell. The result of their method was 
the removal of anomalies in the original data set and the 
improvement of data quality as demonstrated comparing the 
downscaled monthly results with ground stations data from 
2000 to 2013.

An attempt to deliver a precipitation product that could 
serve as forcing to hydrological models is the downscaled 
GPM IMERG precipitation at 1 km spatial resolution with 
an hourly time step (Ma et al. 2018a). It was the first down-
scaling approach for the GPM era precipitation, providing 
output at an hourly time step, although the enhancement was 
mainly focused on the spatial dimension, improving it from 
0.1° to 1 km, whereas the temporal resolution was simply 
an accumulation at an hourly time step of the half-hourly 
initial product. Contrary to the previous work of Ma et al. 
(2017b), where DEM was found to have low correlation 
with precipitation in Qinghai–Tibet Plateau, the method-
ology of Ma et al. (2018a) was based solely on DEM and 
a new algorithm to estimate disaggregation weights, i.e., 
the Geographically Moving Window Weight Disaggrega-
tion Analysis. Application of the downscaling process at the 
Ganjiang River basin, showed that the downscaled precipita-
tion demonstrated almost similar spatial patterns with those 
of original IMERG data. However, it should be pointed out 
that performance of the downscaling approach was assessed 
introducing the downscaled precipitation into the Coupled 
Routing and Excess Storage (CREST) model across Gan-
jiang River basin. CREST streamflow was then compared 
against streamflow monitoring data for a relatively short 
period, from 1 May to 30 September 2014, indicating the 
need for downscaling output to be validated using ground 
rain gauge information. Overall, the approach was interest-
ing, as it was focused on the improvement of hydrological 
forecasts. However, it relied only on DEM, disregarding 
other variables, such as cloud properties, which are known 
to impact both occurrence and magnitude of precipitation.

Ma et al. (2019), demonstrated a downscaling and calibra-
tion methodology to obtain both monthly and daily down-
scaled precipitation from TMPA monthly (3B43) and daily 

(3B42). The methodology was analogous to that described 
in Ma et al. (2018b) as well as the study area, i.e., Qing-
hai–Tibet Plateau and the results indicated the same findings 
with those of the previously published research.

A great advance in the statistical downscaling approaches 
was the one followed in Sharifi et al. (2019), where, for the 
first time, cloud properties were used to downscale the daily 
GMP IMERG at the daily time step, from 0.1° to 1 km spa-
tial resolution. In their work, cloud effective radius, cloud 
optical thickness, and cloud water path, were evaluated as 
auxiliary variables using three downscaling techniques, i.e., 
multiple linear regression, artificial neural networks, and 
spline interpolation. The results were verified by observa-
tion records of 54 rain gauges across the study area, for five 
heavy precipitation events, during 2015 in northeast Austria. 
The conclusions of their work indicated that the downscaled 
data set with all techniques captured the spatial pattern of 
precipitation better, compared to the original data set. Spline 
interpolation performed slightly better, whereas the residual 
correction improved the results. A general inference was that 
there cannot be a perfect agreement with the ground obser-
vations for the examined heavy precipitation events, which 
is expected due to the difference in spatial scale of satellite 
information and ground observations. A clear advantage of 
the adoption of cloud properties in the downscaling process 
is that it can also be applicable for water bodies and urban 
areas, where NDVI fails to serve as an auxiliary variable. 
A disadvantage is that cloud properties are only available 
during daytime. Precipitation in the study area, however, is 
not affected by altitude, and orographic effects should also 
be considered in cases of complex terrains.

A downscaling effort of the TRMM 3B43 product at the 
annual and monthly scales at 1 km spatial resolution over 
the Yangtze River Basin is presented in Chen et al. (2019) 
for the period 2000–2016. The downscaling was followed 
by a calibration process using the geographical differential 
analysis. Verification was conducted using monthly data 
from 70 ground stations operating in the study area. Both 
NDVI and EVI were tested for their downscaling ability and 
NDVI was found to perform better than EVI, while DEM 
was also used as auxiliary variable. After computing the 
annual downscaled data set, monthly values were also evalu-
ated using monthly fractions estimated with Ordinary Krig-
ing interpolation. The methodology was tested for GPM data 
as well, and in both cases, i.e., TRMM and GPM data sets, 
the results were satisfactory in all examined metrics.

Cloud properties have also been incorporated in the spa-
tial downscaling of GPM IMERG half-hourly/0.1° data in 
the work of Ma et al. (2020). The methodology is similar to 
that of Sharifi et al. (2019), enhanced with the Geographi-
cally Moving Window Weight Disaggregation Analysis 
described in Ma et al. (2018a). The downscaled data set is 
provided at 0.01° × 0.01° grid, on an hourly time step for 
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the southeast coast of China. Validation of the methodol-
ogy was focused on a single typhoon event that affected the 
study area during 17th August 2018. Cloud properties, i.e., 
cloud effective radius (CER), cloud top height (CTH), cloud 
top temperature (CTT) and cloud optical thickness (COT), 
were evaluated separately and the results indicated that all 
variables improved the downscaled product compared to the 
original IMERG data set. Downscaling with CER performed 
better than all other variables. However, compared to gauge 
data, all variables performed modestly. It should be high-
lighted, however, than unlike the methodology described in 
Sharifi et al. (2019) that integrated all cloud properties in 
the downscaling process, in the work of Ma et al. (2020) the 
variables were evaluated separately. In addition, the valida-
tion was based only on a single event, while more cases 
including other hydroclimatic zones are certainly needed 
for validation purposes. Besides the great potential of cloud 
properties in the downscaling of satellite precipitation esti-
mates highlighted in other works as well (Yang et al. 2019), 
there are difficulties while trying to downscale at a specific 
spatial and temporal scale. These are related to data scarcity 
of rainfall-related environmental variables at 0.01°/hourly 
scale, and also the quality of the original IMERG product 
that has an impact on the downscaling performance.

A comparison study was conducted in Chen et al. (2020a), 
where five different downscaling algorithms were evaluated 
for their ability to downscale GPM IMERG V06B monthly 
and annual precipitation from 0.1° to 1 km. The five algo-
rithms comprised two regression methods and three machine 
learning methods. The comparison exercise was applied 
from 2001 to 2015 in the Gansu province in China, an area 
typical of the semi-arid-to-arid climate conditions. Five 
commonly used auxiliary variables were introduced in the 
process, namely, NDVI, LST, elevation, longitude and lati-
tude and the acquired results were compared against ground 
data from 80 weather stations in the study area. Overall, 
machine learning models performed better compared to the 
regression models, with latitude having the most significant 
impact. Random Forest was used as the machine learning 
method and it outperformed the rest of the examined algo-
rithms. The residual correction improved the results of the 
regression models, whereas it had only minor impact on the 
results of the machine learning methods. In addition, the 
results of the regression models had specific underestima-
tion and overestimation spatial patterns. The work of Chen 
et al. (2020a) highlights the potential of Random Forest to 
improve precipitation data sets and expand their applicabil-
ity to hydrological and other applications.

Chen et al. (2020b) performed a “temporal upscaling—
spatial downscaling—temporal downscaling” technique to 
downscale daily TRMM–3B42 precipitation products from 
0.25° to 1 km spatial resolution. They utilized NDVI, DEM 
and location data and performed GWR and SVR methods to 

investigate the relations among the parameters, over Central 
China, for the period 2015–2016. Then, using rain gauge 
data and 3 different techniques, namely, kriging with exter-
nal drift (KED), conditional merging (CM) and GDA meth-
ods, produced the final precipitation, while they evaluated 
the performance of those methods. They concluded that their 
approach can improve the final precipitation product, while 
the KED outperformed the other approaches.

Another research using GPM IMERG (V06B, Final Run, 
monthly) precipitation estimates was that of Lu et al. (2020). 
They managed to downscale the product from 0.1° to 0.01° 
spatial resolution, utilizing NDVI and rain gauges data, 
over Tianshan Mountains, for the period May to September 
2014–2018. To accomplish this, they followed the Optimum 
Interpolation technique (IO) (Eliassen 1954; Gandin 1965), 
and performed an intercomparison of downscaled IMERG 
data produced with GWR, spline interpolation and residual 
correction methods. They concluded that the IO approach 
improved the accuracy of the final downscaled precipitation 
product, while the data produced with the OI-GWR method 
outperformed the others. The drawback of this approach 
though, was that it cannot be applied in regions with no rain 
gauges cover.

Yan et al. (2021) performed a Random Forest method 
and a Data Fusion algorithm to downscale daily IMERG FF 
data from 0.1° to 0.01° spatial resolution. They applied their 
method over the Hanjiang Basin in China from 1st March 
2016 to 28th February 2018, using NDVI, LST, DEM and 
precipitation data not only from IMERG but also from 160 
regional rain gauges. They followed a three-step approach. 
First, they produced downscaled IMERG precipitation data 
utilizing NDVI, LST and DEM data and performing a Ran-
dom Forest model. Then, they corrected their intermediate 
precipitation product using a residual correction method and 
finally, they performed a cokriging (CK) method to merge 
the downscaled rainfall with the gauge measurements. The 
final product was found to be more accurate than the original 
IMERG product, but with the limitation that their method 
could be implemented over regions with adequate rain gauge 
cover.

Two different methods were evaluated in Zhang et al. 
(2020a) for their downscaling ability of the TRMM3B42V7 
data set from 2005 to 2010 at the monthly time step. The 
environmental variables used were daytime land surface 
temperature (LTD), slope of terrain, NDVI, altitude, longi-
tude and latitude. The methods applied were the geographi-
cally weighted regression model and the back-propagation 
artificial neural networks. The results were compared with 
records from 27 rain gauges across the study region. The 
geographically weighted regression performed better than 
artificial neural networks, on most cases both in dry and 
wet seasons. A new finding is that bias correction before 
downscaling helps in acquiring better downscaling outputs.
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The geographical weighted regression was also used 
in the work of Arshad et al. (2021), within an Integrated 
Downscaling and Calibration framework. They developed 
a mixed geographical weighted regression, suitable to deal 
with both fixed and spatially varied relationships of pre-
cipitation with environmental variables. Therefore, TRMM 
precipitation data from a resolution of 0.25° × 0.25° was 
downscaled to a high-resolution, i.e., 1 km × 1 km for the 
period of 2000–2018 over the Upper Indus Basin (UIB), 
an area with complex topography and diverse climate, at 
the annual, monthly and daily time scales. Many environ-
mental variables were introduced in the process, some of 
those using spatially varying relationship with precipitation, 
i.e., actual evapotranspiration, NDVI, wind speed and cloud 
cover, while others were introduced with a spatially constant 
relationship, i.e., slope and LST. The validation of the meth-
odology was achieved by comparing the downscaled precipi-
tation data with data from 46 ground stations. The results of 
the mixed geographical weighted regression were compared 
to those of the ordinary geographical weighted regression, 
indicating that the mixed approach performs better. The cali-
bration of the downscaled results with the recorded ground 
data improved the downscaled precipitation.

A geostatistical downscaling approach similar to that of 
Park et al. (2017) was presented in Lu et al. (2021), which 
was extended to downscale GPM IMERG at 1 km spatial 
resolution at the hourly time step. The area to point kriging 
was applied and a two-step correction followed, using the 
probability density function matching and optimum inter-
polation. The methodology was applied in Tianshan Moun-
tains, China and it was validated using hourly precipitation 
data from 1065 automatic weather stations, indicating con-
siderable improvement of the downscaled data set after the 
correction process. An advantage of the methodology is 
that to acquire the downscaled precipitation it does not rely 
on predictor’s variables. However, incorporation of ground 
gauge data in the correction process certainly restricts the 
application of the method to areas with a scarce precipitation 
monitoring network.

Shen and Yong (2021) followed a new approach of down-
scaling IMERG precipitation estimates, from 0.1° to 1° spa-
tial resolution, using a Gradient Boosting Developing Tree 
(GBDT) (Friedman 2001). They used the annual IMERG 
FF precipitation product, in conjunction with DEM, LST 
and NDVI data to train and perform the GBDT, for differ-
ent climatic regions over the Mainland China, for the period 
2015–2018. The produced final downscaled IMERG data 
set, was validated using rain gauge observations. In addition, 
to evaluate the performance of GBDT over this complex 
terrain, they produced similar downscaled IMERG products 
using the RF and SVM methods. They concluded that the 
GBDT and RF methods outperform the SVM downscaling 
method, especially over complex regions. Furthermore, they 

noted that the GBDT is sensitive to the unbalanced precipita-
tion data and that the geographical location is more impor-
tant than the other surface factors.

Zhao (2021) used DEM, NDVI and precipitation data 
from both physical and virtual rain gauges to downscale 
monthly IMERG precipitation estimates, from 0.1° to 1° 
spatial resolution, applying a Random Forest algorithm, 
a residual correction technique and a kriging method. 
The novelty in this study, that was applied over the Heihe 
watershed in China for the period 2000–2021, was that he 
created a network of virtual rain gauges, according to the 
existing physical network and their topographical proper-
ties, using Shannon’s entropy and Gaussian semi-variogram 
methods (Shannon 1948). The precipitation amount of each 
site was calculated utilizing the WRF model. The down-
scaled IMERG precipitation estimates were produced after 
using a Random Forest algorithm with NDVI and DEM data 
(elevation, aspect, slope and relief) as covariates and apply-
ing a residual correction technique. Finally, he merged the 
station values with the results using a kriging method and 
validate them with the precipitation data from 15 virtual 
and 13 physical meteorological stations. He inferred that 
the applied residual correction improved the accuracy of the 
final downscaled IMERG product, while the implementation 
of more meteorological stations to the scheme will amelio-
rate the final results.

Sun et  al. (2022) performed an evaluation research 
between three different downscaling models, namely, a 
Geographically Weighted Regression (GWR) model, uti-
lizing DEM data from the Advanced Spaceborne Thermal 
Emission and Reflection Radiometer (ASTER) instrument 
(30 m, GDEM V2) and monthly daytime LST data from 
MODIS instrument (MOD11A2), both onboard Terra satel-
lite, a MultiFractal Random Cascade (MFRC) model and a 
combination of those two, namely, the GWR-MF model. For 
this purpose, they used 36 months (2015–2017) of monthly 
GPM IMERG FR precipitation estimates, over Hubei Prov-
ince in China. For the evaluation of the models’ performance 
to downscale the GPM IMERG estimates from 0.1° to 0.01°, 
they also used precipitation data from 75 rain gauges. They 
concluded that the GWR–MF model performs better than the 
other two models, while the GWR model is more reliable 
than the MFRC model.

Another recent work that adopts the geographically 
weighted regression model, is that of Wang et al. (2022). 
They used topographical variables along with longitude and 
latitude to downscale the GSMaP, adjusted with gauge pre-
cipitation products from the 0.1° spatial resolution to 1 km, 
at annual, seasonal and monthly time steps from 2000 to 
2020. Recent studies, such as the study of Zhou et al. (2020) 
showed that GSMaP–gauge precipitation data set outper-
forms the other GPM products at daily, monthly, and sea-
sonal scales, and this was the rationale behind the selection 
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of this specific product for downscaling. The study area was 
the Qilian Mountains, an area with complex topography. The 
validation that was performed using data from 27 meteoro-
logical stations in the area, showed considerable improve-
ment of the downscaled results compared to the original 
GSMaP–gauge product. The accuracy of the acquired results 
was found to be adequate, especially at annual, spring, sum-
mer, autumn, and months from March to November. On the 
other hand, the lack of monitoring points in mountain areas, 
especially over 3000 m altitude, poses a restriction in the 
assessment of the downscaling performance in high altitude 
areas.

Zeng et al. (2022) proposed a new remote sensing down-
scaling precipitation technique (LPVIAL), using a newly 
developed Vegetation Index, based on Adaptive Lag phase 
(VIAL). Their technique was applied to the daily IMERG 
FF precipitation product, downscaling it from 0.1° to 1 km, 
and upscaling to 16 day temporal resolution, using NDVI, 
landcover type (MCD12Q1) and rain gauge data as auxil-
iary parameters, over Yangtze River Delta, for the period 
2010–2017. Their algorithm was based on the assump-
tion that there is a lag phase between precipitation and its 
response to vegetation growth. To validate their results, 
the final downscaled IMERG product was compared to 
rain gauge observations, as well as to a NDVI-only-based 
downscaled IMERG product. It was found that the LPVIAL 
accuracy was better than the NDVI approach, while the 
LPVIAL-based IMERG final product performed better 
than the NDVI-based IMERG product. A drawback of their 
method is that the final IMERG data set has a temporal reso-
lution of 16 days, lower than the original product (1 day).

Table  1 summarizes the main features of the above 
analysis.

Dynamical downscaling methods

The dynamical downscaling relies on the RCMs, which 
process the output of GCMs or reanalysis data sets to pro-
duce climate variables at the regional or even local scales 
(Tang et al. 1955). Dynamical downscaling involves the use 
of physically based numerical models, but it is computa-
tionally demanding (Sharifi et al. 2019). There are several 
weather prediction systems that have the ability to assimi-
late precipitation data not only at a global scale, such as 
the European Centre for Medium-Range Weather Forecasts 
(ECMWF) system (Lopez and Bauer 2007; Lopez 2013), the 
Goddard Earth Observing System (GEOS) (Pu et al. 2002; 
Lin et al. 2007) and the National Centers for Environmen-
tal Prediction (NCEP) Global Forecast System (GFS) (Lien 
et al. 2016), but also at a regional scale as well, such as 
the Weather Research and Forecasting (WRF) model (Lin 
et al. 2015) and the Japan Meteorological Agency (JMA) 
system (Koizumi et al. 2005). Those systems utilize various 

data assimilation algorithms, such as Kalman filter (Even-
sen 1997), three-dimensional variational (3D-Var) (Sasaki 
1958), four-dimensional variational (4D-Var) algorithms 
(Sasaki 1970), polynomial interpolation method (Panofsky 
1949), etc. Among them, the 4D-Var assimilation algorithms 
are the most commonly used, since they can directly assimi-
late conventional and unconventional precipitation in contin-
uous time, with better dynamic constraints (Bannister 2017). 
Koizumi et al. (2005) managed to successfully assimilate 
precipitation data from radar (1-h temporal, 20 km spatial 
resolution) getting improved precipitation forecasts up to 
18 h ahead. Mesinger et al. (2006) reported improvements 
in the precipitation analysis relative to the reference monthly 
observations, after assimilating hourly precipitation observa-
tions into the North American Regional Reanalysis system, 
(3-h temporal, 32-km spatial resolution). In addition, Lopez 
and Bauer (2007) reported significant improvement in the 
short-term precipitation forecasts after assimilating NCEP 
precipitation into the ECMWF Integrated Forecast System.

Dynamical downscaling refers to the utilization of RCMs 
to simulate finer-scale physical processes conformable with 
the large-scale weather evolution stated from General Cir-
culation Models (GCMs) (Giorgi et al. 2001; Schmidli et al. 
2007). Specifically, the dynamical downscaling of precipi-
tation is achieved by assimilating the precipitation data 
into RCMs, an approach that has received a lot of attention 
among the scientific community in recent years.

Lin et al. (2017) assimilated the 6-h TRMM 3B42 (v7) 
precipitation data, over the United States, using the 4D-Var 
component of the WRF Data Assimilation (WRFDA) sys-
tem, in conjunction with soil moisture data from the Soil 
Moisture Ocean Salinity (SMOS) satellite using a WRF-
Noah 1D-Var, to improve forecasting of land–atmospheric 
exchange and understand their relative implications. After 
comparing their results with data from the NCEP Stage IV 
precipitation data set during 1–28 July 2013, they concluded 
that with the assimilation of both TRMM and SMOS data, 
the forecast skill of precipitation was improved, by reducing 
the prediction biases and root-mean-square errors by 57% 
and 6%, respectively.

Yi et al. (2018) also applied the 4D-Var assimilation 
algorithm to assimilate TRMM 3B42 and GPM IMERG-F 
precipitation data into the WRF model, to study two heavy 
precipitation events in 2015 that occurred over Huaihe 
River Basin (HRB) in Eastern China. They evaluated the 
model results with in situ observations from 30 meteorologi-
cal stations from the Chinese Meteorological Administra-
tion (CMA) in the HRB and with hourly merged Climate 
Prediction Center Morphing (CMORPH) technique data. 
They found that using 4D-Var assimilation method with 
both satellite-based precipitation data could improve WRF 
precipitation predictions at a time interval of approximately 
12 h and that the assimilation of IMERG-F into the WRF 
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produced better results than the assimilation of TRMM 3B42 
precipitation data, since GPM data have a better capability 
of measuring light rain (Tang et al. 2016).

The same dynamical downscaling method (4D-Var algo-
rithm) was used by Wang et al. (2020) examining the per-
formance of the WRF model for forecasting heavy rainfall 
events over Yangze River Delta (YRD). Specifically, they 
examined two Tropical Cyclones (TC) events (Jondari and 
Rumbia) that took place in August 2018 and caused the 
flooding of the YRD region, using IMERG-L precipita-
tion data. After comparing their findings with assimilating 
rain gauge precipitation data into the WRF model and with 
WRF results without assimilating observation data, they 
concluded that the assimilated IMERG precipitation data 
improved the forecast of heavy rain falls and reduced the 
erroneous detection rate, especially for rain rates greater 
than 5 mm/h.

A different approach was followed by Zhang et  al. 
(2020b), studying three synoptic-scale convective precipi-
tation events, during 2015–2017, over the central United 
States. Even though they used the 4D-Var precipitation 
assimilation method in WRF model with IMERG-F pre-
cipitation data, they transformed the data logarithmically 
before assimilating them into the WRF model. After evaluat-
ing them against the WRF predictions of non-transformed 
assimilated precipitation data, they found no improvement 
in precipitation estimations.

Another application of the 4D-Var method was made 
by Yi et al. (2021). They used IMERG precipitation data 
and assimilated them into the WRF–TOPX coupled model, 
to simulate a flood that occurred in August 2015, in the 
Wangjiaba watershed in eastern China. The comparison of 
their results with the precipitation data from 215 stations 
of Chinese Ministry of Water Resources (CMWR) revealed 
that the 4D-Var assimilation with the IMERG data could 
improve the performance of the coupled land–atmosphere 
WRF–TOPX model.

Discussion

Downscaling of remotely sensed precipitation has been 
proven to result in improved quality of the precipitation 
products, enhancing their ability to describe the spatial 
and temporal variability of precipitation. Remotely sensed 
precipitation estimates can be effectively downscaled using 
various downscaling approaches.

Regarding the statistical downscaling approaches, a vari-
ety of methods have appeared in literature, each one having 
its advantages and disadvantages. Statistical downscaling of 
remotely sensed precipitation relies on other land and cli-
mate variables, such as NDVI, EVI, LST, cloud properties, 
topography, longitude and latitude of finer spatial resolution. 

They take advantage of the better spatial representation of 
those variables, to produce precipitation at improved spatial 
scales. In this way, the inherent uncertainties of the auxiliary 
variables may pass to the downscaled precipitation. In addi-
tion, a statistical relationship should be established between 
precipitation and auxiliary variables. In some cases, certain 
variables, such as DEM, seem to be well-correlated with 
precipitation (Ma et al. 2018a), while in others, this relation-
ship does not hold (Ma et al. 2017b), depending mainly on 
the area and the temporal scale of the analysis. The problem 
between non-stationarity of precipitation and land variables 
relationship seems to be well-addressed by the Cubist algo-
rithm, although this approach has only been tested mostly at 
the annual time step, while monthly precipitation is acquired 
using monthly fractions. Those temporal resolutions are of 
little use for hydrological forecasts, especially for extreme 
events cases. Since the temporal and spatial resolution of 
downscaled precipitation depends on the auxiliary variables, 
it is difficult for downscaling approaches to utilize vegetation 
indices to produce higher temporal resolution output.

Geostatistical methods such as in Park et al. (2017) and 
Lu et al. (2021), do not rely on auxiliary variables but exploit 
the attributes of neighboring pixels, to obtain high resolution 
estimates of precipitation. Nevertheless, the performance of 
the method relies on the existence of network of gauging 
stations. The hourly downscaled precipitation acquired in 
Lu et al. (2021) is a great improvement compared with the 
monthly precipitation acquired in Park et al. (2017), indicat-
ing the potential of the methodology to provide useful input 
to hydrological applications and improve their forecasts. In 
addition, according to Park et al. (2017) that integrated rain 
gauge data in their data, a small number of gauge stations 
may improve the downscaling results considerably. Thus, 
the potential of the geostatistical approaches to be used 
even in places with small coverage of rain gauge stations is 
highlighted. However, further research is needed in differ-
ent hydroclimatic conditions and terrains with limited rain 
gauges, to better investigate the performance of the geo-
statistical approaches. On the other hand, Lu et al. (2021), 
succeeded covering almost the entire study area, using 
numerous automatic weather stations (about 1065), allow-
ing them to include almost all types of terrain in their study 
area. Another solution could be the use of active microwave 
sensors, which provide high-resolution precipitation data, 
allowing for a more detailed representation of precipitation 
patterns at a local scale. Thus, comparing the downscaled 
precipitation estimates with active microwave data we can 
validate the spatial representation of the downscaled prod-
ucts. This validation process ensures that the downscaled 
precipitation captures the fine-scale spatial variability and 
patterns of precipitation as observed by active microwave 
sensors. In addition, ground radars could be an alternative 
mean for validating downscaled precipitation during extreme 
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weather events, such as heavy rainfall or convective storms. 
The high-resolution measurements provided by the ground 
radars allow for a detailed evaluation of the downscaled 
products' ability to locate storm structures and localized 
features associated with extreme events. By comparing the 
downscaled estimates with the radar observations during 
such events, the accuracy of the downscaled precipitation 
products can be assessed.

While most statistical downscaling approaches are 
focused on annual and monthly products, the small number 
of works that provide output at the daily, sub daily and even 
hourly time steps, constitute a great advance in downscaling, 
because their output is applicable in many hydrological and 
climate assessments. Still there is need for improvement of 
the temporal resolution of the downscaled product, as the 
main effort is to incorporate the spatial scales, losing much 
of the temporal information provided by the half-hourly 
GPM–IMERG product.

Regarding the spatial dimension, all statistical downscal-
ing methodologies published in relevant literature provide 
spatial resolution up to 1 km, although most of the auxiliary 
variables are available at higher spatial resolutions. Results 
with comparison to rain gauge stations indicated that in most 
areas examined, the 1 km resolution sufficiently describes 
the spatial variability of precipitation.

Regarding the spatial dispersion of research works con-
ducted on downscaling of satellite precipitation estimates, 
the vast majority of publications are focused on Asia and 
mostly on China. Considerably fewer works are found 
for Europe, Africa, and America, where the downscaling 
methods used were dynamical downscaling (Lin et al. 2015; 
Nunes 2016) or statistical downscaling methods (Retalis 
et al. 2017) of climatology reanalysis data sets. It is neces-
sary to acquire results from other areas of the world, to test 
performance of downscaling approaches in various hydro-
climatic environments with different topography (Zeng et al. 
2022). One should, however, keep in mind that statistical 
relationships are highly area dependent, and therefore, their 
applicability is not foreseen at larger scales, e.g., continental 
or global, and this is the main disadvantage of statistical 
compared to the dynamical downscaling. In addition, other 
variables such as downscaled soil moisture may prove to be 
successful auxiliary variables to downscale remotely sensed 
precipitation estimates. SM2RAIN algorithm highlighted 
this potential, but the methodology still does not provide 
the required spatial and temporal resolution. This algorithm 
should be improved considerably, especially over complex 
terrains.

The statistical relationships cannot be regarded as sta-
tionary in time. Within the frames of a changing climate 
those relationships may change and should be re-evaluated. 
Relationships may also be different in different seasons and 

seasonal models could provide a better representation of 
precipitation seasonality.

Several correction approaches following the initial 
downscaling steps are found in relevant works. Residual 
correction provides improved results in all cases applied. 
A calibration process using various techniques such as 
the Geographical Difference Analysis or the Geographi-
cal Ratio Analysis proved beneficial as well, although their 
performance depends on the availability of rain gauge sta-
tion data. Most researches apply calibration and bias cor-
rection on the downscaled outcome, while others apply the 
correction before downscaling (Zhang et al. 2020a). In any 
case, comparing data sets of such different spatial scales, 
e.g., point rain gauge data with precipitation at resolution 
of 10 km, does not guarantee the computation of an actual 
bias between the two data sets. Therefore, comparison of the 
downscaled fine resolution, e.g., at 1 km, with rain gauge 
data sets, seems much more advantageous. It should be noted 
that most correction and calibration processes with rain 
gauge data are mostly applied in lowland terrains, as there 
is lack of ground monitoring stations operating in mountain 
areas (Wang et al. 2022). It is of great importance to examine 
the applicability of various downscaling approaches in high 
altitudes but lack of ground information is a restriction for 
those areas.

Regarding the algorithms applied in statistical downscal-
ing, many works use univariate or multivariate regression 
formulas, while others use machine learning algorithms. 
Even though in most works machine learning methods out-
perform the simple regression algorithms, there are cases 
where the opposite is observed (Zhang et al. 2020a). Most 
of the models and algorithms studied in this paper, i.e., UR 
model, MLR and GWR model need different prediction fac-
tors for downscaling SPEs, such as DEM, longitude, latitude, 
EVI, LTD, LST, NDVI etc. Thus, these different influencing 
factors lead to diverse effects on downscaling and variable 
performance. As far as the multifractal technique is con-
cerned, even though it has been popular among the scientific 
community since the 1990s, it suffers from restrictions, such 
as the type of terrain, spatial heterogeneity, seasonal varia-
tions, availability of precipitation data and rainfall intermit-
tency (Deidda et al. 2006). Finally, the combination of MLR 
and ANN method and the GMWWDA method, based on 
cloud properties to downscale SPEs, seems to be among the 
most promising methods to obtain better spatial and tem-
poral results.

A crucial challenge for future research is latency. Cur-
rently, GPM IMERG Early Run releases precipitation data 
with a minimum latency of ~ 4 h, which is useful for early 
warning systems to operate, e.g., flood forecasts. Neverthe-
less, the acquisition of downscaled precipitation at reasona-
ble spatial resolution for accurate hydrological forecasts with 
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low latency has not yet been achieved and is unquestionably 
an important topic for future research.

Dynamical downscaling of TRMM and IMERG pre-
cipitation data includes their assimilation into global and 
regional climate models, modifying their spatial and tem-
poral resolution, according to the model’s results (Lin et al. 
2015; Nunes 2016). Among the various data assimilation 
methods in climate models, the most widely used is the 
4D-Var method applied in WRF model, especially in the 
cases of extreme events (Yi et al. 2018; Wang et al. 2020). 
Although the computational requirements of this assimila-
tion method are not only high but also time-consuming, the 
results indicate that the forecast skill of precipitation esti-
mation from the WRF model is improved considerably (Yi 
et al. 2021). Unfortunately, only few studies have assimilated 
TRMM and IMERG precipitation data in climate models. In 
addition, the limited number of regions that where investi-
gated, hinder us from evaluating these results in regions with 
different hydroclimatic characteristics.

To conclude, as far as spatial resolution is concerned, all 
examined published works obtained a spatial resolution of 
1 km, while regarding the temporal resolution most works 
focused on the monthly time step. Only a few studies pro-
vided hourly temporal resolution (Ma et al. 2018a, 2020; 
Lu et al. 2021).

Precipitation downscaling methods improve not only the 
quality of the remotely sensed precipitation estimates but 
also hydrological forecasting. Nevertheless, it seems that 
there is no universal solution capable of downscaling satel-
lite precipitation estimates at a global or even continental 
scale. Site specific approaches are, therefore, of practical 
importance. However, only few studies have provided out-
put at reasonable temporal resolution, e.g., daily or sub 
daily. The use of cloud properties in combination with 
machine learning algorithms seems to be the most promising 
approach (Wang et al. 2022) to acquire meaningful down-
scaled precipitation for hydrological and other related appli-
cations and should be the focus of future research works.

Conclusions

Previous research has shown that it is essential to have high 
spatial and temporal resolution precipitation data for areas, 
where precipitation information is sparse and for regions 
with complex topography and various climate conditions. 
Several approaches have been developed to downscale 
the satellite-based precipitation estimates in the previous 
studies.

In this paper, various precipitation downscaling method-
ologies and models were reviewed, discretized in two main 
categories, i.e., the statistical and the dynamical approaches. 
Statistical methods include regression, multifractal, machine 

learning models and auxiliary environmental variables to 
improve the spatial resolution of SPEs. Due to their lower 
computational demands needed, they are much more popular 
than dynamical downscaling methods. In future studies, it 
is necessary to exploit the full potential of machine learn-
ing algorithms. In addition, the ability of many auxiliary 
variables to describe the spatial and temporal variability 
of precipitation has been investigated. All examined vari-
ables improved the downscaling of precipitation estimates, 
although relationships were highly dependent on the study 
area. Cloud properties seem to perform better both in spatial 
and temporal terms, although further research is needed to 
investigate the applicability of the methodology in various 
terrains and hydroclimatic conditions.

Regarding dynamical downscaling approaches, only a few 
studies dynamically downscaled TRMM and IMERG pre-
cipitation data using data assimilation methods. The 4D-Var 
assimilation method of WRF model is the most widely used 
in the scientific community, improving the precipitation 
forecast capability of the model at finer scales. Future inves-
tigations should fill in the gap of dynamical downscaling 
remote sensing precipitation data using more climate mod-
els, not only global but also regional, and over regions with 
different hydroclimatic characteristics.
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